The Future of U.S. Carbon-Pricing Policy

In 2007, I was asked by the leaders of the Brookings Institution’s Hamilton Project to write a paper describing a national emissions trading system to reduce U.S. carbon dioxide (CO2) emissions to help address the threat of global climate change.  I responded that I would prefer to write broadly about carbon-pricing instruments, including what I considered to be the symmetric instruments of a carbon tax and a carbon trading program.  But the Hamilton Project leaders said no, they would find someone else to write about carbon taxes (which turned out to be Gib Metcalf), and they wanted me to “make the strongest case possible for” what is today called a cap-and-trade system.  I did my best, and in the process I came to be identified – and to some degree may have become – an advocate for CO2 cap-and-trade.  For better or for worse, during the Obama administration transition, the design recommendations in my Hamilton Project paper became one of the starting points for efforts to structure the administration’s proposed CO2 cap-and-trade system that became part of the failed Waxman-Markey legislation, H.R. 2454, the American Clean Energy and Security Act of 2009.

More than a decade later, I have written a new paper in which I seek to approach this question as I wished to in the first place, treating both instruments in a balanced manner, examining their merits and challenges, without necessarily favoring one or the other.  On May 16, 2019, I presented this new paper at the National Bureau of Economic Research’s first annual Environmental and Energy Policy and the Economy Conference, held at the National Press Club in Washington, D.C.  My topic was, “The Future of U.S. Carbon-Pricing Policy.”  (It will be forthcoming in Environmental and Energy Policy and the Economy, volume 1, edited by Matthew Kotchen, James Stock, and Catherine Wolfram, published by the University of Chicago Press.)  In today’s blog essay, I provide a very brief summary of the paper, based upon the presentation I made at the NBER conference.  I hope you will find this of sufficient interest to download and read the complete paper.

Premises, Questions, and Conclusions

I began this research with two major premises:  first, that economists and most other policy analysts agree that carbon-pricing will likely be a necessary (although not sufficient) part of any meaningful, long term U.S. climate change policy, because of:  (1) feasibility – the necessity of affecting millions, indeed hundreds of millions, of decentralized decisions; (2) cost-effectiveness, given the tremendous heterogeneity of marginal abatement costs; and (3) the importance of providing incentives for carbon-friendly technological change.  My second premise was that there is much less agreement among economists (and other policy analysts) regarding the choice of specific carbon-pricing policy instrument – carbon tax or cap-and-trade.

This prompts two questions:  (1) how do the two major approaches to carbon pricing compare on relevant dimensions, including but not limited to efficiency, cost-effectiveness, and distributional equity?  (2) Which approach is more likely to be adopted in the future in the United States?

Having carried out an exhaustive examination, two major conclusions stand out (among others).  First, that the specific designs of carbon taxes and cap-and-trade are more consequential than the choice between the two instruments.  And second, that political feasibility affects the normative merits of the two instruments, and vice versa.

Similarities & Symmetries

Of fourteen separate issues I examine, some appear at first to be key differences (in theory), but many of these differences fade on closer inspection, and depend on specifics of design.

First of all, carbon taxes and commensurate cap-and-trade turn out to be perfectly equivalent in regard to:   (a) incentives for emission reduction (both can be upstream on the carbon content of fossil fuels); (b) aggregate abatement costs (both can be cost-effective, both provide the same incentives for technological change, and both can utilize offsets to further lower aggregate abatement costs); and (c) effects on competitiveness (both can lessen these impacts via appropriate border adjustment mechanisms).

Next, the two instruments are nearly equivalent in regard to possibilities for raising revenue (cap-and-trade can utilize auctions, but given the structure of Congressional committees, revenue recycling may be easier with taxes).

And these instruments are similar in regard to:  (a) costs to regulated firms (cap-and-trade systems can freely allocate allowances, and taxes can provide inframarginal exemptions below a specified level of emissions); and (b) distributional impacts (the two instruments can be designed to be roughly equivalent in this regard).

Differences & Distinctions

Beginning with the least significant differences, there are relatively minor distinctions in terms of transaction costs (decreasing marginal transaction costs in cap-and-trade systems – such as with volume discounts on brokers’ fees – can violate the independence property, whereby the equilibrium allocation of allowances and hence aggregate costs are ordinarily independent of the initial allocation).

There are more meaningful, but still subtle differences with regard to:  (a) performance in the presence of uncertainty (for this, I urge you to read at least this section of the complete paper, because new research suggests that the implications of the classic Weitzman rule in the presence of a stock externality are moderated – if not reversed – due to the persistent effects of technology shocks, which foster positive correlation between marginal benefits and marginal costs); and (b) linkage with other jurisdictions (it is easier with cap-and-trade systems, but tax systems can also be linked).

That said, there are significant differences between the instruments in terms of:  (a) carbon-price volatility (a problem only with cap-and-trade systems, but a problem that can be mitigated with price collars and banking of allowances); (b) interactions with complementary policies (a significant issue with cap-and-trade systems, which is much less severe with carbon taxes, because the “waterbed effect” is eliminated); (c) market manipulation (there is a need for regulatory oversight in cap-and-trade systems, but tax evasion is a parallel issue in tax systems, although presumably less severe in the U.S. context); and (d) complexity and administrative requirements (cap-and-trade is certainly more complex and has greater administrative requirements, but one might ask whether a simple tax will remain “simple” as it works its way through the Congress).

Hybrid Policy Instruments and a Policy Continuum

Many of the remaining differences can diminish further with implementation.  Indeed, hybrid policies which mix features of tax and cap-and-trade blur distinctions.  For example, auctioning of allowances and the use of price collars bring cap-and-trade closer to a tax system; and quantity formula employed to adjust a tax, and the use of tax revenues to mitigate emissions bring a tax closer to cap-and-trade.  The result is that the dichotomous choice between a carbon tax and cap-and-trade can become a choice of design elements along a policy continuum, and the design of these instruments can be more consequential than the choice between the two.

Which is More Likely to be Adopted – Taxes or Trading?  Positive Political Theory

Framing this question in terms of the metaphor of a political market, it is helpful to think about political demand and political supply of policy instruments.  In terms of the demand from interest groups, first, regulated industry may oppose an ordinary tax approach, as it typically leads to greater costs than the simplest cap-and-trade (or than a performance standard, for that matter), because private industry is paying not only for compliance costs, but also for the tax on residual emissions.  Second, regulated industry may favor cap-and-trade, because it conveys scarcity rents to firms, and can provide entry barriers for potential new entrants, which can make the rents sustainable.

Environmental advocacy groups favor cap-and-trade, due to the emissions certainty it provides, but also because presumably they have a preference for policies that help obscure costs, and cap-and-trade does a better job of sweeping discussion of costs under the rug than does a tax.  However, in the era since cap-and-trade was demonized as “cap-and-tax,” this difference may be much less than it was!

Turning to the supply side (within the legislature), the revenue from either a tax or auctioning of allowances can be attractive to government.  And because of the independence property of cap-and-trade, legislators can allocate allowances to build political support without increasing the costs or reducing the effectiveness of the policy.  Of course, this important political advantage becomes an economic disadvantage if it invites particularly harmful rent-seeking behavior.  Finally, environmental policy makers tend to think in terms of pollution quantities, not prices.

Experience with Carbon Pricing:  Emissions Coverage & Price in Implemented Initiatives

            There are some fifty carbon-pricing systems in operation worldwide, with equal numbers of carbon taxes and carbon cap-and-trade systems.  A quick comparison of these policies reveals two striking realities.  First, the highest carbon prices (the height of the bars in the figure below) are for carbon taxes (in norther Europe).  Second, the scope of coverage (the width of each bar in the figure) of cap-and-trade systems greatly exceeds that of carbon taxes.  Putting the two features (severity and scope) together, a reasonable measure of the relative importance of the policies is given by multiplying the carbon price (tax level or market price of allowances) by the tons of coverage, that is, the respective areas in the figure.  On this basis, it appears that political revealed preference has been weighted toward cap-and-trade (at least up until now).

Carbon Price & Emissions Coverage of Implemented Carbon-Pricing Initiatives

Which Has Worked Better – Experiences with Trading and Taxes

Based upon more than thirty years of experience with cap-and-trade systems, including but not limited to CO2 programs, lessons regarding the design and efficacy of these systems can be drawn.  In brief, there is empirical evidence for the following:  cap-and-trade has proven to be environmentally effective and economically cost-effective; downstream, sectoral programs have been common, but economy-wide upstream systems are feasible; transaction costs have been low to trivial; a robust market requires a cap below business-as-usual; banking has been exceptionally important, representing a large share of the gains from trade; price collars are very beneficial; free allocation of allowances fosters political support, with a likely transition to greater auctioning over time; competitiveness impacts can be mitigated with an output-based updating allocation; “complementary policies” are common, but in some cases can have perverse consequences, including no additional emissions reduction, an increase in aggregate costs, and suppressed allowance prices.

Turning to experiences with carbon taxes, two applications stand out.  First, there are the northern European carbon tax systems, initiated in the 1990s in Norway, Sweden, Denmark, and Finland.  Typically these were elements of broader energy and excise tax reform initiatives, and some are at the highest levels of any carbon-pricing regimes worldwide.  However, fiscal cushioning has been common for industries expressing concerns.  That said, these taxes have raised significant revenues to finance spending or to lower other tax rates, but unfortunately, there is little empirical evidence of their emissions impacts.

More striking is British Columbia’s carbon tax, initiated in 2008, which comes closest to that recommended by economists.  Currently, it is an upstream tax of $27/ton of CO2, but with important exemptions in place for key industries.  Importantly, 100% of tax revenue was originally refunded through general tax rate cuts, but over time, there has been more focus on tax cuts for specific sectors and locations.  Although there is some debate in the literature, it appears to have been effective in reducing emissions.

Empirical Evidence for Positive Assessment

Given that the normative differences between the two instruments are minimal, a key question becomes which instrument is more politically feasible, and which is more likely — in practice — to be well designed.  Based on experiences with cap-and-trade and carbon taxes, the relative masses in the figure above suggest that political revealed preference has favored the former.  Furthermore, after years of deliberation, China has chosen trading for its national program (although it appears to be a set of sectoral tradable performance standards, not a true, mass-based cap-and-trade system).  In addition, the new “Transportation and Climate Initiative” in the northeast United States was first proposed in terms of fuel taxes but is gravitating toward cap-and-trade.  Also, New Jersey is preparing to rejoin the Regional Greenhouse Gas Initiative, and Oregon is poised to enact an economy-wide CO2 cap-and-trade system this year.  On the other hand, Washington State has twice defeated a carbon tax.

But past may not be prologue.  The demonization of the Waxman-Markey trading system as “cap-and-tax” may have reduced the political advantage of cap-and-trade (that it can hide the costs).  And there is clearly increasing interest in a national carbon tax in the policy world, including several bills in Congress and the prominent Climate Leadership Council proposal.  On the other hand, the “Green New Deal” is silent about carbon-pricing of any kind.

It is worthwhile focusing on the political economy of the British Columbia carbon tax.  Its successful enactment has been attributed to “the confluence of political conditions ripe for carbon taxation”:  untapped hydroelectric potential; a strongly environmentalist electorate (as in the case of California’s move to cap-and-trade with Assembly Bill 32); a right-center government with trust from the business community (as with the George H.W. Bush administration’s SO2 allowance trading system in the Clean Air Act amendments of 1990); and a premier with institutional capacity to pursue personal policy preferences.  There has been increasing public support over time, due to the perception of emissions reductions without severe economic impacts, but political pressures have caused the evolution of the system from using revenues exclusively to cut distortionary taxes to greater use of tax cuts to favor specific sectors and regions.

Clearly, political pressures can drive up social costs with either type of carbon-pricing instrument.  On the one hand, politics may disfavor the auctioning of allowances in cap-and-trade systems, while, on the other hand, politics may disfavor cost-effective cuts of distortionary taxes in tax systems.

Does Either Carbon-Pricing Instrument Dominate in Normative or Positive Terms?

When carbon taxes and cap-and-trade are designed to be truly comparable, their characteristics and outcomes are similar, and in some cases fully equivalent (normatively), in terms of their:  emission reductions, abatement costs, revenue raising, costs to regulated firms, distributional impacts, and competitiveness effects.  But on some other dimensions, there can be real differences in performance.  The tax approach is favored by administrative requirements, interactions with complementary policies, and effects on carbon-price volatility; whereas cap-and-trade is favored by linkage with policies in other jurisdictions, and possibly by anticipated performance in the presence of uncertainty.  In the positive political economy domain, the evidence is also decidedly mixed.  Hence, there is not a strong case for the blanket superiority of either instrument.  Differences in design simply dominate differences between the instruments themselves.

Can Carbon-Pricing be Made More Politically Acceptable?

The track record of 50 carbon-pricing policies cited above should be contrasted with the 176 countries with renewable energy policies or energy efficiency standards, as well as another 110 national and sub-national jurisdictions with feed-in tariffs.  Hence, carbon pricing has not in general been the favored approach to climate change policy.  Why is this the case?  Survey and other evidence indicates that public perceptions – some of which are inaccurate – are primary factors behind aversion to carbon taxes:  “personal costs too great; policy is regressive; could damage economy; will not discourage carbon-intensive behavior; and government just want the revenues.”  So, one way to improve public acceptance could be through better information, that is, education.

But another way forward could be through judicious policy design, which may well depart from first-best design, including:  phasing in taxes/caps over time (which was effective in California and British Columbia); earmarking revenues from taxes/auctions to finance additional climate mitigation, in contrast with optimizing the system via cuts in distortionary taxes; and/or using revenues for fairness purposes, such as with lump-sum rebates or rebates targeted to low-income and other particularly burdened constituencies (a carbon tax with “carbon dividends” or a cap-and-trade system in the form of “cap-and-dividend”).

Has the Defeat of National CO2 Cap-and-Trade Initiatives Provided Openings for Carbon Tax Proposals?

Political polarization has decimated the key source of Congressional support for environmental/energy action, the political middle.  And the successful political battle against the Obama administration’s CO2 cap-and-trade legislation featured the effective demonization of that instrument as “cap-and-tax.”  Does the consequent reputational loss for cap-and-trade provide a meaningful opening for the other carbon-pricing instrument – a carbon tax?

It would seem that large budgetary deficits ought to increase the attraction of new sources of revenue, but existing carbon tax proposals have largely been revenue-neutral.  That said, it is surely true that there has been increased attention to carbon taxes from the “policy community,” with support coming not just from Democrats, but also from prominent Republican academic economists and former Republican high government officials.  But – finally – what about in the real political world of those currently holding elective office in the federal government?

It is presumably good news for carbon tax proposals that they are not “cap-and-trade.”  Perhaps that helps with the political messaging.  But if conservative opposition could tarnish cap-and-trade as “cap-and-tax,” surely it will not be difficult to label a tax as a tax!  And in addition to such opposition from the political right, it is – as of now – questionable whether the new left will want a carbon tax to be part of its “Green New Deal.”

Hence, in the short term, national carbon pricing of either type will likely continue to face an uphill battle.  Therefore, in addition to considering second-best carbon-pricing design (as I recommended above), economists can work productively to catch up with political realities by considering better designs of second-best non-pricing instruments, such as clean energy standards.

But, at some point the politics will change, and it is important to be ready, which is why – for the longer term – ongoing research on carbon-pricing is very much warranted, particularly if it can be carried out in the context of real-world politics, and focus on policies that are likely at some point to prove feasible.

Share

Linking Heterogeneous Climate Policies (and Activities at COP-23 in Bonn)

It’s well known that the Paris Agreement has achieved broad participation by countries accounting for some 97% of global GHG emissions (in contrast to the 14% of global emissions associated with countries taking on responsibilities under the current commitment period of the Kyoto Protocol).  That is a very important accomplishment, but as negotiations begin to elaborate key details of the Agreement (as they will in Bonn in November), a critical question is how to create incentives for countries to increase ambition over time. The ability to link different climate policies, such that emission reductions undertaken in one jurisdiction can be counted toward the mitigation commitments of another jurisdiction, may help Parties increase ambition over time.  A new paper from the Harvard Project on Climate Agreements by Michael Mehling of MIT, Gilbert Metcalf of Tufts University, and myself explores options and challenges for facilitating such linkages in light of the considerable heterogeneity that is likely to characterize regional, national, and sub-national efforts to address climate change.  The full paper is available for downloading, as is a two-page summary.

We will be presenting our results on November 13th and 14th in Bonn at the Twenty-Third Conference of the Parties (COP-23) of the United Nations Framework Convention on Climate Change.  At the end of this blog essay, I offer some details about these and other forthcoming activities of the Harvard Project on Climate Agreements at COP-23 in Bonn.

Background

Linkage is important, in part, because it can reduce the costs of achieving a given emissions-reduction objective. Lower costs, in turn, may make it politically feasible to embrace more ambitious objectives. In a world where the marginal cost of abatement – that is, the cost to reduce an additional ton of emissions – varies widely, linkage improves overall cost-effectiveness by allowing jurisdictions with relatively higher abatement costs to finance reductions from jurisdictions with relatively lower costs. In effect, linkage drives participating jurisdictions toward a common cost of carbon, equalizing the marginal cost of abatement and producing a more efficient distribution of abatement activities. These benefits are potentially significant: The World Bank has estimated that international linkage could reduce the cost of achieving the emissions reductions specified in the initial set of NDCs submitted under the Paris Agreement 32% by 2030 and 54% by 2050.

Article 6 of the Paris Agreement provides a foundation for linkage by recognizing that Parties to the Agreement may “choose to pursue voluntary cooperation in the implementation of their” NDCs through “the use of internationally transferred mitigation outcomes” (ITMOs). In contrast to the Kyoto Protocol (which likewise included provisions for international cooperation), the voluntary and flexible architecture of the Paris Agreement allows for wide variation, not only in the types of climate policies countries choose to implement, but in the form and stringency of the abatement targets they adopt.

Heterogeneous Linkage

Linkage is relatively straightforward when the policies involved are similar. However, linkage is possible even when this is not the case: for example, when one jurisdiction is using a cap-and-trade system to reduce emissions while another jurisdiction is relying on carbon taxes. There are several potential sources of heterogeneity: type of policy instrument used (for example, taxes vs. cap-and-trade vs. performance or technology standard); level of government jurisdiction involved (for example, regional, national, or sub-national); status under the Paris Agreement (that is, whether or not the jurisdiction is a Party to the Agreement – or within a Party); nature of the policy target (for examle, absolute mass-based emissions vs. emissions intensity vs. change relative to business-as-usual); and operational details of the country’s NDC, including type of mitigation target, choice of target and reference years, and sectors and greenhouse gases covered.

Analyzing Potential Linkages (Consistent with the Paris Agreement)

The full paper examines five specific cases of linkage, with various combinations of features, to identify which types of linkage are feasible, which are most promising, and what accounting mechanisms are needed to make their operation consistent with the Paris Agreement.  Each of the cases maps to a real-world example.

Most forms of heterogeneity – including with respect to policy instruments, jurisdictions, and targets – do not present insurmountable obstacles to linkage. However, some of these characteristics present challenges and call for specific accounting guidance if linkage is to include the use of ITMOs under the Paris Agreement. In particular, robust accounting methods will be needed to prevent double-counting of GHG reductions, to ensure that the timing (vintage) of claimed reductions and of respective ITMO transfers is correctly accounted for, and to ensure that participating countries make appropriate adjustments for emissions or reductions covered by their NDCs when using ITMOs. Additional issues under Article 6 include how to quantify ITMOs and how to account for heterogeneous base years, as well as different vintages of targets and outcomes.

Issues for the Climate Negotiators

Broader questions that bear on the opportunities for linkage under Article 6.2 include the nature of NDC targets and whether these are to be treated as strict numerical targets that need to be precisely achieved; the nature and scope of ITMOs, which have yet to be defined, let alone fully described, under the Paris Agreement; and finally, whether transfers to or from non-Parties to the Agreement (or sub-national jurisdictions within non-Parties) are possible, and if so, how they should be accounted for. Parties have differing views, however, on whether the guidance on Article 6.2 should extend to such issues.

Clear and consistent guidance for accounting of emissions transfers under Article 6 can contribute to greater certainty and predictability for Parties engaged in voluntary cooperation, thereby facilitating expanded use of linkage. At the same time, too much guidance, particularly if it includes restrictive quality or ambition requirements, might impede linkage and dampen incentives for cooperation. Given their limited mandate, Parties should exercise caution when developing guidance under Article 6.2 that goes beyond key accounting issues. This does not mean that concerns about ambition and environmental integrity should be neglected. However, if the combination of a set of common accounting rules and an absence of restrictive criteria and conditions can accelerate linkage and allow for broader and deeper policy cooperation, it can also increase the potential for Parties to scale up the ambition of their NDCs. And that may ultimately foster stronger engagement between Parties (and non-Parties), as well as with regional and sub-national jurisdictions.


++++++++++++++++++++++++++++++++++++++++++++++++++++++++


The Harvard Project on Climate Agreements at COP-23 in Bonn

We will conduct three panel events at the Twenty-Third Conference of the Parties (COP-23) of the United Nations Framework Convention on Climate Change (UNFCCC) in Bonn, Germany, during the week of November 13, 2017.  If you have credentials to access the secure area of the COP, you are most welcome to attend any or all of these.  Also, COP-23 attendees who wish to meet with the Harvard Project during the conference should email: Jason Chapman (Jason_Chapman@hks.harvard.edu).

Events in Brief:

Heterogeneous Linkage and the Evolution of Article 6
Monday, November 13
12:00 – 1:30 pm
Pavilion of the International Emissions Trading Association (IETA)

Implementing and Linking Carbon Pricing Instruments: Theory and Practice
Tuesday, November 14, 2017
11:30 am – 1:00 pm
Side Event Meeting Room 12

Carbon Pricing Policy Design
Tuesday, November 14, 2017
2:00 – 3:30 pm
Pavilion of the International Emissions Trading Association (IETA)

Events in Detail:

Heterogeneous Linkage and the Evolution of Article 6, Monday, November 13, 12:00 – 1:30 pm, Pavilion of the International Emissions Trading Association (IETA)

Participants:

Jos Delbeke, Director General for Climate Action, European Commission

Kelley Kizzier, Co-Chair, Article 6, Subsidiary Body for Scientific and Technological Advice

Michael Mehling, Deputy Director, Center for Energy and Environmental Policy Research
Massachusetts Institute of Technology

Gilbert Metcalf, Professor of Economics, Tufts University

Robert Stavins, A. J. Meyer Professor of Energy and Economic Development, Harvard Kennedy School

Abstract:

The Paris Agreement has achieved one of two key necessary conditions for ultimate success — a broad base of participation among the countries of the world. But another key necessary condition has yet to be achieved — adequate collective ambition of the individual nationally determined contributions (NDCs). How can climate negotiators provide a structure that provides incentives to increase ambition over time? One part of the answer can be facilitating international linkage of regional, national, and sub-national policies. A central challenge is how to accomplish this in the context of the great heterogeneity that characterizes climate policies, along several dimensions, in the context of Paris-Agreement NDCs. Panelists will review the status of linkage in the world, the evolution of Article 6, and the relationship between the two.

Implementing and Linking Carbon Pricing Instruments: Theory and Practice, Tuesday, November 14, 2017, 11:30 am – 1:00 pm, Side Event Meeting Room 12, Co-Hosts: Harvard Project on Climate Agreements and Enel Foundation

Participants:

Andrei Marcu, Senior Fellow, International Centre for Trade and Sustainable Development

Michael Mehling, Deputy Director, Center for Energy and Environmental Policy Research, Massachusetts Institute of Technology

Gilbert Metcalf, Professor of Economics, Tufts University

Simone Mori, Head of European Affairs, Enel

Robert Stavins, A. J. Meyer Professor of Energy and Economic Development, Harvard Kennedy School

Other participant(s) to be determined

Abstract:

The Paris Agreement has achieved one of two key necessary conditions for ultimate success — a broad base of participation among the countries of the world. But another key necessary condition has yet to be achieved — adequate collective ambition of the individual nationally determined contributions. This panel will consider how this issue might be addressed by international linkage of regional, national, and sub-national policies — that is, formal recognition of emission reductions undertaken in another jurisdiction for the purpose of meeting a Party’s own mitigation objectives. A central challenge is how to facilitate such linkage in the context of the very great heterogeneity that characterizes Nationally Determined Contributions along several dimensions. We consider such heterogeneity among policies, and identify which linkages of various combinations of characteristics are feasible; of these, which are most promising; and what accounting mechanisms would make the operation of respective linkages consistent with the Paris Agreement. The panel will draw in part on a paper by Michael Mehling, Gilbert Metcalf, and Robert Stavins, “Linking Heterogeneous Climate Policies (Consistent with the Paris Agreement),” available here

Carbon Pricing Policy Design, Tuesday, November 14, 2017, 2:00 – 3:30 pm, Pavilion of the International Emissions Trading Association (IETA), Co-Hosts:  Harvard Project on Climate Agreements and Enel Foundation

Participants:

Daniele Agostini, Head of Low Carbon Policies and Carbon Regulation, Enel

Joseph Aldy [via videoconference], Associate Professor of Public Policy, Harvard Kennedy School

Gilbert Metcalf, Professor of Economics, Tufts University

Robert Stavins, A. J. Meyer Professor of Energy and Economic Development, Harvard Kennedy School

Other participant(s) to be determined

Abstract:

This panel will review experiences with cap-and-trade and carbon-tax policies, and draw lessons from those experiences. Panelists will also examine the choice between — and design of — such policies, through a political-economy lens, in order to highlight important public policy principles and policy options in carbon-pricing-policy design. The panel will draw in part on a paper by Joseph Aldy, “The Political Economy of Carbon Pricing Policy Design,” available here.

Share

The UN Climate Summit and a Key Issue for the 2015 Paris Agreement

World leaders converged at the United Nations in New York City this past week for Secretary-General Ban Ki-moon’s much anticipated Climate Summit, a lead-up to global negotiations that will take place in Lima, Peru, in December of this year, and culminate a year later in Paris.  The challenge before negotiators is great, because there are significant obstacles to reaching a meaningful agreement, as I describe in an Op-Ed that appeared in The New York Times on Sunday, September 21st, “Climate Realities.”

However, partly because of the new path that is being taken under the Durban Platform for Enhanced Action, in which all countries will be included under a common legal framework in a politically realistic hybrid policy architecture, the prognosis for a meaningful international agreement is better now than it has been in decades.  I discuss this briefly at the end of the Times article, and emphasize it in a follow-up Op-Ed that appeared in The Boston Globe on September 23rd, “UN summit can accelerate momentum to a new approach to climate change.”  (Also, for my overall assessment of the UN Climate Summit, see this interview carried out by the Harvard Kennedy School’s Doug Gavel.)

A New Development at the UN Climate Summit

The most significant development at the UN Climate Summit this past week was the degree to which carbon pricing became central to so many discussions, including with leaders from the business community.  As carbon pricing – in particular, cap-and-trade systems – have emerged as the policy instrument of choice in many parts of the world, interest in linking these systems together has grown.  Linkage (unilateral or bilateral recognition of allowances) among carbon markets — and, for that matter links with non-market-based systems — can reduce the aggregate cost of achieving climate targets.  And lower compliance costs can in turn encourage countries to increase the ambition of their contributions under the 2015 Paris agreement.

New Research from Harvard

Because of this, the Harvard Project on Climate Agreements has been collaborating with the International Emissions Trading Association (IETA) to explore the role of linkage in the new international climate change agreement to be completed in Paris.  In this new research, my co-authors (Daniel Bodansky of Arizona State University, Seth Hoedl of Harvard Law School, and Gilbert Metcalf of Tufts University) and I examine linkage — not only among cap-and-trade systems, but among cap-and-trade, carbon tax, and non-market regulatory systems — and the role that linkage should play in the 2015 agreement.  We look both at what would inhibit or even prevent linkage and should therefore be avoided in the 2015 agreement, and what – in a positive sense – should be included in the agreement to facilitate effective linkage of regional, national, and sub-national climate policies.

We released an Executive Summary of our research paper (“Facilitating Linkage of Heterogeneous Regional, National, and Sub-National Policies Through a Future International Agreement”) in New York City on September 22nd at an event co-sponsored by IETA and the Harvard Project, on the sidelines of UN Climate Summit, “Carbon Pricing and the 2015 Agreement” (the agenda of the event is available here).

In the executive summary (which can be downloaded in full here), we conclude that among the design elements the 2015 agreement should avoid because they would inhibit linkage are so-called “supplementarity requirements” that require parties to accomplish all (or a large, specified share) of their emissions-reduction commitments within their national borders. The 2015 agreement also should avoid including detailed linkage rules in the core agreement; an agreement with more flexibility would allow rules to evolve on the basis of experience.

Importantly, we also find that, to advance linkage, the 2015 agreement should:  define key terms, in particular the units that are used for compliance purposes; establish registries and tracking mechanisms; and include default or model rules, from which nations are free to deviate at their discretion.  Overall, the most valuable outcome of the Paris Agreement regarding linkage may simply be including an explicit statement that parties may transfer portions of their emissions-reduction contributions to other parties — and that these transferred units may be used by the transferees to implement their own commitments.

Looking Forward

We will release the complete research paper in November of this year, prior to the Twentieth Conference of the Parties (COP-20) of the United Nations Framework Convention on Climate Change in Lima, Peru, in December 2014, where the Harvard Project and IETA plan to conduct a side-event that will focus on this work.

When the full paper is released in November, I will provide a more complete description at this blog of our research methods and our findings.

[Additional press coverage is here, here, here, here, here, here, here, here, here, and here.]

Share