What Should We Make of China’s Announcement of a National CO2 Trading System?

On December 19, 2017, the government of China announced that it is commencing development of a nationwide CO2 trading system, that when launched will become the world’s largest carbon trading system, annually covering about 3.5 billion tons of CO2 emissions in China’s electric power sector.  That approaches twice the size of what is currently the world’s largest carbon trading system, the European Union Emissions Trading System, which accounts for about 2 billion tons per year, and is nearly nine times the size of the largest U.S. system, the California AB-32 cap-and-trade system, which covers about 400 million tons of annual emissions.

The ultimate purpose of the newly announced Chinese trading system is to help the country meets its emissions and renewable energy targets which are part of its Nationally Determined Contribution under the Paris Agreement, in particular, peaking its CO2 emissions by 2030, and achieving 20% of the country’s energy supply from renewables.  Note that coal currently accounts for 65% of China’s electricity generation.  Wind and solar capacity have been growing rapidly, but still account for only 4% and 1% of generation, respectively.

The Chinese carbon market will double the share of global CO2 emissions covered by worldwide carbon-pricing systems to almost 25 percent.  For this and other reasons, the December announcement was greeted with excited praise from climate activists (but simultaneously with disregard and skepticism from conservative opponents of climate action).  The most reasonable assessment, however, is between those two extremes, as I explain in this essay.  That said, the December announcement by China of its plan to develop and launch a nationwide CO2 trading system is an important landmark on the long road to addressing the threat of global climate change.

Some Brief History for Context

In 2011, China’s 12th Five-Year Plan (2011-2015) first included a statement about the government’s intention to develop – gradually – a nationwide carbon market.  Subsequently, in 2013 and 2014, seven pilot emissions trading programs were launched in the cities of Beijing, Chongqing, Shanghai, Shenzhen, and Tianjin, plus two provincial systems in Guangdong and Hubei.  In total, these covered some 3,000 sources, with total annual CO2 emissions of 1.4 billion tons.  The designs of the systems were intentionally varied, to facilitate learning, and allowance prices ranged from $3 to $10 per ton of CO2.

Then, in the lead-up to the Paris climate negotiations, on September 25, 2015, President Xi Jinping met at the White House with U.S. President Barack Obama, and announced that China would launch its nationwide CO2 trading system in 2017, presumably covering electricity, iron and steel, chemicals, cement, and paper production.

The announcement last month was the culmination of this brief history, as China seeks to move ahead with its “pledges” under the Paris Agreement, at the same time as the Trump administration in the United States intends to withdraw altogether from the Agreement (in November, 2020, the soonest that such withdrawal can take place under the rules of the Agreement).

What’s Known about the Chinese Carbon Trading System

China’s December announcement that it is commencing development of a nationwide CO2 trading system, beginning with the electric power sector only, provided few detailsApparently, the system is intended to eventually include electricity, building materials, iron and steel, non-ferrous metal processing, petroleum refining, chemicals, pulp and paper, and aviation, but will start with the electricity sector alone.  Like most operating systems in the world, it will regulate only CO2, not other greenhouse gases (GHGs), which in China’s case means potentially addressing more than 80% of its total GHG emissions.

The system will not be a cap-and-trade system per se (unlike the CO2 trading systems in Europe and California, for example), because there will not be an administratively set mass-based cap of some quantity of emissions.  Rather, the trading system will be rate-based, meaning that it will be in terms of emissions per unit of electricity output.  This is also called a tradable performance standard, whereby the government sets a performance standard (a benchmark emissions rate per unit of output), sources receive permits (allowances) based on their electricity output and their benchmark, and sources are allowed to trade.  Such tradable performance standards have been used previously in a variety of contexts, including the U.S. EPA leaded gasoline phasedown in the 1990s, U.S. Corporate Average Fuel Economy (CAFE) standards to regulate motor-vehicle fuel efficiency, the Obama Administration’s Renewable Fuel Standard, and California’s Low Carbon Fuel Standard.

One objective of using this approach is to insulate – or at least cushion – the (electricity) sector and the larger economy from “carbon market shock.”  By regulating the emissions rate (per unit of product output), rather than emissions per se, the rate-based approach may help mitigate the political worry about constraining economic growth, but does so by essentially rewarding (subsidizing) higher levels of output.  This relative inefficiency of China’s rate-based system, compared with a mass-based cap-and-trade approach is highlighted in a new paper by Lawrence Goulder (Stanford University) and Richard Morgenstern (Resources for the Future) and one by William Pizer (Duke University)and Xiliang Zhang (Tsinghua University).  (There is a parallel impact and concern – in cap-and-trade systems – with an output-based updating allocation, which can address competitiveness impacts but also introduces inefficiencies by subsidizing dirty production.  This mechanism – which affects only energy-intensive and trade-exposed industries – was proposed in the Waxman-Markey climate legislation and is employed in California’s system.)

The rate-based approach is intended to have a smaller impact on marginal production costs than the mass-based cap-and-trade approach, and thereby is likely to have a smaller impact on the price of products (whether electricity or manufactured goods).  This is the motivation for using this approach in an output-based updating allocation, as described above, and it carries with it the parallel disadvantage of insulating consumers from (some of) the social costs of their consumption decisions.  The problem is exacerbated in the case of China’s evolving system because the performance standards (emission benchmarks) are set not only by sector, but by various categories of electricity production within the sector.  As some categories are, in effect, subsidized by other categories, the cost-effectiveness of the overall system declines.  There is a lack of incentive for the carbon market to move energy consumption from coal to natural gas, for example, because of the multi-benchmark approach.

Finally, it appears that allowances will be allocated without charge, at least in the early stages of the program, which has been typical of emissions trading systems in other parts of the world, and may lessen political resistance while also sacrificing potential efficiency gains associated with auctioning allowances and recycling revenues.

What’s Unknown about the Chinese Carbon Trading System

Among the key design elements that are unknown as of now (at least to me) are the following:

(1)        What will the total allocation of allowances initially be and how will it change (presumably decrease) over time?  Apparently the overall “cap” will be set by adding up the expected emissions of compliance entities, based on their historical emissions.  Then, allocations will be reduced, presumably based on technology performance benchmarks.

(2)        When will trading commence?

(3)        What share of allowances will be distributed for free, and how many – if any – will be auctioned (and how will any auctions operate)?

(4)        What provisions will there be for monitoring and enforcement, and will there be fines or other penalties for non-compliance?

(5)        How will the system interact with other Chinese climate policies?  This is an important question, because so-called “complementary policies” that seek to regulate sources under the cap of a cap-and-trade system can lead to perverse outcomes, as in the European Union and California.

(6)        What is the time-path for expanding the scope of the system to include more sectors, and what sectors will be added?

(7)        When and how, if at all, will China seek to link its system with carbon-pricing and other climate policies in other parts of the world?

Given all of these open questions plus the limited sectoral scope of the announced system, it is reasonable to ask:  what should we make of all this?

How Significant was the Chinese Announcement?

The announcement, despite all the caveats, was a significant step along the road of climate change policy developments, because the Chinese system will eventually be very important, because of its magnitude and because of the importance of China in CO2 emissions and climate change policy.  However, the announcement was not a launch per se, but a statement about a forthcoming launch.

More broadly, the announcement and the eventual launch of the system will have significant effects on other governments around the world – regional, national, and sub-national.  Some will be encouraged to launch or maintain their own carbon trading systems, and to increase the ambition of their systems.  Why do I say this?

A frequently stated fear of adopting climate policies, including carbon pricing, is the competitiveness effects of those policies, due to emission, economic, and employment leakage.  This is more a political issue than a real economic one, but it is nevertheless important.  Since the greatest fear in this realm is that domestic factories will relocate to China, that concern will be greatly reduced – or at least it should be – when and if China has put in place a serious climate policy, whether through carbon markets or otherwise.

China is moving slowly and cautiously, which is wise.  Not long ago, they were considering launching a system that would initially cover 7,000 companies in several sectors, but the 2017 announcement is of a system that covers 1,700 companies in the electricity sector alone.  Of course, it is still important, given that the electricity sector (with its large coal and natural gas plants) accounts for fully a third of China’s CO2 emissions.

During the next two years, the Chinese government – apparently through its National Development and Reform Commission (NDRC), which will administer the trading system – will begin by developing systems for data reporting, registration, & trading – gathering and verifying plant-level emissions data.  This will facilitate the establishment of baselines for allocations of allowances.  Beyond this, a wide range of rules will need to be established.  Following some tests, the actual spot market may launch in 2020 (the same year the Paris Climate Agreement essentially replaces the Kyoto Protocol).

The Path Ahead

As inevitably seems to be the case, the best assessment of this new policy lies somewhere between the extremes.  The December announcement by China was neither as exciting as some of the applause from climate activists might suggest, nor was the announcement as meaningless as conservatives have claimed.

Rather, cautious optimism seems to be in order.  China is serious about climate change, and is thinking long-term.  The country appears to be methodically working to develop a meaningful carbon trading system.  What is important now is developing a robust system that can be effective, expanded in scope, and gradually made more stringent.  Among the greatest challenges will be achieving the cooperation of the provincial governments, not to mention the compliance of the regulated entities.

Development of the system has begun, with the real launch of trading likely to take place in 2020, which is a key year for Chinese climate policy for other reasons, as well.  In that year, China will release its next Five-Year Plan, and it will submit its updated Nationally Determined Contribution to the UNFCCC under the Paris Agreement.  What will the United States be doing that year?  Not much, just electing a President!

Share

Learning from Thirty Years of Experience with Cap-and-Trade Systems

“Those who do not remember the past are condemned to repeat it.”

The implication of this famous line (often misquoted as “those who do not learn history are doomed to repeat it”) from philosopher George Santayana’s 1905 book, The Life of Reason, Volume I – Reason in Common Sense, is that we are wise to learn from our mistakes.  This is undoubtedly true, as is the parallel recommendation that we are wise to learn from our successes.

Background

China is expected to launch later this year the world’s largest (CO2) emissions trading system; the European Union is in the process of extending and strengthening its CO2 cap-and-trade system; California has just extended and strengthened its CO2 cap-and-trade system; and earlier this week, nine New England and Middle Atlantic U.S. states announced their plan to extend and strengthen the Regional Greenhouse Gas Initiative.  With such developments in place and on the horizon, this is an important time to think carefully and critically about the history of cap-and-trade, and identify lessons that can be learned from three decades of prior experiences – both successes and failures.

That is precisely what Richard Schmalensee (Howard W. Johnson Professor of Economics and Management, Emeritus, at the Massachusetts Institute of Technology, and Dean Emeritus of the MIT Sloan School of Management) and I sought to do in an article which recently appeared in the Review of Environmental Economics and Policy (REEP) (“Lessons Learned from Three Decades of Experience with Cap and Trade,” Review of Environmental Economics and Policy, volume 11, issue 1, Winter 2017, pp. 59-79).  I encourage you to read the full article, which – in keeping with the style of the Review of Environmental Economics and Policy – is brief and broadly accessible.

In the hope that you may be stimulated to read the full article, in today’s blog essay I draw on the article to provide the historical context of our analysis, and to review some of our conclusions (for the actual analysis of individual cap-and-trade systems, and the justifications for our conclusions, you will need to see the article).

The Historical Context

Thirty years ago, many environmental advocates argued that government allocation of rights to emit pollution legitimized environmental degradation, while others questioned the feasibility of such an approach.  At the time, virtually all pollution regulations took a command-and-control approach, specifying the type of pollution-control equipment to be used or setting uniform limits on emission levels or rates.

Today, it is widely recognized – at least among students of economics – that because emission reduction costs can vary greatly, the aggregate abatement costs under command-and-control approaches can be much higher than under market-based approaches, which establish a price on emissions – either directly through taxes or indirectly through a market for tradable emissions rights established under a cap-and-trade policy.  Because market-based approaches tend to equate marginal abatement costs rather than emissions levels or rates across sources, they can achieve aggregate pollution-control targets at minimum cost.

In the REEP article, Dick Schmalensee and I examined the design and performance of seven of the most prominent emissions trading systems that have been implemented over the past 30 years in order to identify key lessons for future applications.  We focused on systems that have been important environmentally and/or economically, and whose performance has been well documented.  We excluded emission-reduction-credit (offset) systems, which offer credits for emissions reductions from some counterfactual baseline, because while emissions can generally be measured directly, emissions reductions are unobservable and often ill-defined.

The seven emissions trading systems we examined were:

  • the U.S. Environmental Protection Agency’s (EPA’s) phasedown of leaded gasoline in the 1980s;
  • the U.S. sulfur dioxide (SO2) allowance trading program under the Clean Air Act Amendments of 1990;
  • the Regional Clean Air Incentives Market (RECLAIM) in southern California;
  • the trading of nitrogen oxides (NOX) in the eastern United States;
  • the Regional Greenhouse Gas Initiative (RGGI) in the northeastern United States;
  • California’s cap-and-trade system under Assembly Bill 32; and
  • the European Union (EU) Emissions Trading System (ETS).

All of these programs except the first are textbook cap-and-trade systems.

In the article, we reviewed the design, performance, and lessons learned from each of the seven systems (and briefly discussed several other cap-and-trade systems).  In this blog essay, however, I turn immediately to our summary of key lessons.

Lessons from Thirty Years of Experience

Overall, we found that cap-and-trade systems, if well designed and appropriately implemented, can achieve their core objective of meeting targeted emissions reductions cost-effectively.  This is not something that was taken for granted in the past, and is still not accepted in some quarters.  That said, the devil is in the details, and design as well as the economic environment in which systems are implemented are very important.  Moreover, as with any policy instrument, there is no guarantee of success.  Based on the numerous specific lessons we identified in our analysis, several design and implementation features of cap-and-trade programs appear critical to their performance.

Key Features for System Design and Implementation

First, it is important not to require prior approval of trades.  In contrast to early U.S. experience with emissions offset systems, transactions costs can be low enough to permit considerable efficiency-enhancing trade if prior approval of trades is not required.

Second, it is clear from both theory and experience that a robust market requires a cap that is significantly below BAU emissions.

Third, to avoid unnecessary price volatility, it is important for final rules (including those for allowance allocation) to be established and accurate data supplied well before commencement of a system’s first compliance period.

Fourth, high levels of compliance in a downstream system can be achieved by ensuring there is accurate emissions monitoring combined with significant penalties for non-compliance.

Fifth, provisions for allowance banking have proven to very important for achieving maximum gains from trade, and the absence of banking provisions can lead to price spikes and collapses.

Sixth, price collars are important.  A changing economy can reduce emissions below a cap, rendering it non-binding, or a growing economy can increase emissions and drive allowance prices to excessive levels.  Price collars reduce price volatility by combining an auction price floor with an allowance reserve.  The resulting hybrid systems will generally have lower costs (as more stable prices facilitate investment planning) at the expense of less certain emissions reductions.

Finally, economy-wide systems are feasible, although downstream, sectoral programs have been more commonly employed.

Political Considerations that Affect Cap-and-Trade Design

Experiences with cap-and-trade also indicate the importance of political considerations for the design of cap-and-trade programs.

First, because of the potentially large distributional impacts involved, the allocation of allowances has inevitably been a major political issue.  Free allowance allocation has proven to help build political support. Under many circumstances, the equilibrium allowance distribution, and hence the aggregate abatement costs of a cap-and-trade system, are independent of the initial allowance allocation (Montgomery 1972; Hahn and Stavins 2012).  This means that the allowance allocation decision can be used to build political support and address equity issues without concern about impacts on overall cost-effectiveness.

Of course, free allowance allocation eliminates the opportunity to cut overall social costs by auctioning allowances and using the proceeds to cut distortionary taxes.  On the other hand, experience has shown that political pressures exist to use auction revenue not to cut such taxes, but to fund new or existing environmental programs.  Indeed, cap-and-trade allowance auctions can and have generated very significant revenue for governments.

Second, the possibility of emissions leakage and adverse competitiveness impacts has been a prominent political concern in the design of cap-and-trade systems.  Virtually any meaningful environmental policy will increase production costs and thus could raise these concerns, but this issue has been more prominent in the case of cap-and-trade instruments.  In practice, leakage from cap-and-trade systems can range from non-existent to potentially quite serious.  It is most likely to be significant for programs of limited geographic scope, particularly in the power sector because of interconnected electricity markets.  Attempts to reduce leakage and competitiveness threats through free allocation of allowances do not per se address the problem, but an output-based updating allocation can do so.

Third, although carbon pricing (through cap-and-trade or taxes) may be necessary to address climate change, it is surely not sufficient.  In some cases, abatement costs can be reduced through the use of complementary policies that address other market failures, but the types of “complementary policies” that have emerged from political processes have instead addressed emissions under the cap, thereby relocating rather than reducing emissions, driving up abatement costs, and suppressing allowance prices.

Identifying New Applications

Cap-and-trade systems are now being seriously considered for a wide range of environmental problems.  Past experience can offer some guidance as to when this approach is most likely to be successful.

First, the greater the differences in the cost of abating pollution across sources, the greater the likely cost savings from a market-based system – whether cap-and-trade or tax — relative to conventional regulation (Newell and Stavins 2003).  For example, it was clear early on that SO2 abatement cost heterogeneity was great, because of differences in ages of plants and their proximity to sources of low-sulfur coal (Carlson et al. 2000).

Second, the greater the degree of mixing of pollutants in the receiving airshed (or watershed), the more attractive a market-based system, because when there is a high degree of mixing, local hot spots are not a concern, and the focus can thus be on cost-effective achievement of aggregate emissions reductions.  Most cap-and-trade systems have been based on either the reality or the assumption of uniform mixing of pollutants. However, even without uniform mixing, well-designed cap-and-trade systems can be effective, as illustrated by the two-zone trading system under RECLAIM, at the cost of greater complexity.

Third and finally, since Weitzman’s (1974) seminal analysis of the effects of cost uncertainty on the relative efficiency of price versus quantity instruments, it has been well known that in the presence of cost uncertainty, the relative efficiency of these two types of instruments depends on the pattern of costs and benefits.  Subsequent literature has identified additional relevant considerations (Stavins 1996; Newell and Pizer 2003).  Perhaps more importantly, theory (Roberts and Spence 1976) and experience have shown that there are efficiency advantages of hybrid systems that combine price and quantity instruments in the presence of uncertainty.

Implications for Climate Change Policy

Two highly relevant lessons from thirty years of experience with cap-and-trade systems stand out.  First, cap-and-trade has proven itself to be environmentally effective and economically cost-effective relative to traditional command and control approaches. Moreover, less flexible systems would not have led to the technological change that appears to have been induced by market-based instruments (Schmalensee and Stavins 2013) or the induced process innovations that have resulted (Doucet and Strauss 1994).

Second, and equally important, the performance of cap-and-trade systems depends on how well they are designed.  In particular, it is important to reduce unnecessary price volatility, and hybrid designs can offer an attractive option if some variability of emissions can be tolerated, since substantial price volatility generally raises costs.

All of this suggests that cap-and-trade merits serious consideration when regions, nations, or sub-national jurisdictions are developing policies to reduce greenhouse gas (GHG) emissions.  And, indeed, this has happened.  However, because any meaningful climate policy will have significant impacts on economic activity in many sectors and regions, proposals for such policies have often triggered significant opposition.

In the United States, the failure of cap-and-trade climate policy in the Congress in 2010 was essentially collateral damage from a much larger political war that decimated the ranks of both moderate Republicans and moderate Democrats.  Nevertheless, political support for using cap-and-trade systems to reduce GHG emissions has emerged in many other parts of the world.  In fact, in the negotiations leading up to the Paris climate conference in 2015, many parties endorsed key roles for carbon markets, and broad agreement emerged concerning the value of linking those markets (codified in Article 6 of the Paris Agreement).

It is certainly possible that three decades of high receptivity to cap-and-trade in the United States, Europe, and other parts of the world will turn out to have been only a relatively brief departure from a long-term trend of reliance on command and control environmental regulation.  However, in light of the generally positive experience with cap-and-trade, there is reason for optimism that the tarnishing of cap-and-trade in US political debates will itself turn out to be a temporary departure from a long-term trend of increasing reliance on market-based environmental policy instruments.  Only time will tell.

Share

Environmental Economics – A Personal Perspective

Today, I wish to take a brief hiatus from reflecting on the current status of climate change policy, whether in the often traumatic context of policy pronouncements – or rather, Twitter messages – from U.S. President Trump and his administration, or in the broader, longer-term context of global actions.  Rather, I want to seize on this mid-summer opportunity to think about the past rather than the present.  In particular, I would like to reflect on the four decades in which I have been engaged in the world of environmental policy, most recently – for the past 30 years – as a scholar, from my professorial perch at Harvard.

This reflection is facilitated by the fact that two years ago, I was asked by the editor of the Singapore Economic Review, Professor Euston Quah, to write about the evolution of the field of environmental economics.  I was pleased to do so, and I decided to take a quite personal approach to summarizing what otherwise would have required a rather Herculean effort.  The result was published earlier this year:  “The Evolution of Environmental Economics:  A View from the Inside,” Singapore Economic Review, volume 62, number 2, 2017, pages 251-274.

[By coincidence, in just a few days, I am travelling to Singapore to make two presentations – on August 4th at the 2017 Singapore Economic Review Conference, and on August 6th at the 7th Congress of the East Asian Association of Environmental and Resource Economics.]

Evolution of the Field of Environmental Economics

Over the past three to four decades, environmental and resource economics has evolved from what was once a relatively obscure application of welfare economics to a prominent field of economics in its own right.  The number of articles on the natural environment appearing in mainstream economics periodicals has continued to increase, as has the number of economics journals dedicated exclusively to environmental and resource topics.  Likewise, the influence of environmental economics on public policy has increased significantly, particularly as greater use has been made of market-based instruments for environmental protection.

My article this year in the Singapore Economic Review provides one economist’s perspective on this twenty-year evolution, first by tracing it through personal reflections on the professional path that has led to my research and writing, and then by summarizing some highlights of my research.  That article was itself rendered feasible because of two previous book projects.

In 1998, my tenth year on the Harvard faculty, I was asked by the British publisher, Edward Elgar Publishing Limited, if I would be willing to assemble my selected papers for a book.  I responded with enthusiasm, and selected 23 articles from the 80 (published and unpublished) papers I had produced as of then – frequently with co-authors – from the time I received my Ph.D. in 1988 through 1999.  Making the selection was not any easy task, but it was a rewarding one.  I categorized my research into seven topic areas:  generic issues in environmental economics; benefits and costs of environmental regulation, and the potential use of efficiency and other criteria for evaluating environmental goals; normative analysis of policy instruments; positive analysis of policy instruments; environmental technology innovation and diffusion; land-use change; and global climate change policy. The resulting volume, Environmental Economics and Public Policy:  Selected Papers of Robert N. Stavins, 1988-1999, was published in 2000.

In 2011, ten years after the publication of my first set of selected papers (1988-1999), Edward Elgar Publishing Limited suggested a second volume.  I selected 26 articles from the many more (published and unpublished) papers I wrote over the decade.  The papers again fell into seven (somewhat different) categories:  generic issues in environmental economics; methods of environmental policy analysis; economic analysis of alternative environmental policy instruments; the economics of technological change; natural resource economics; domestic (national and sub-national) climate change policy; and international dimensions of climate change policy. This led to the publication in 2013 of Economics of Climate Change and Environmental Policy:  Selected Papers of Robert N. Stavins, 2000-2011.

In those two volumes and in the recent article in the Singapore Economic Review, I not only summarized highlights of my research, but I also provided a description of the professional path I have taken.  In this blog essay, I am pleased to offer an abridged version below (with the addition of some relevant hyperlinks).

A Professional Path

In retrospect, my professional path may appear somewhat direct, if not altogether linear, but it hardly seemed so as I travelled along it.  The path I describe took me back and forth across the United States and to several continents, and it took me from physics to philosophy, to agricultural extension, to international development studies, to agricultural economics, and eventually to environmental economics.  During this time, much has changed in the profession.

The early ascendency of the field of environmental economics, during the period from 1970 to 1990, was centered within departments of agricultural and resource economics, mainly at U.S. universities, and at Resources for the Future (RFF), the Washington research institution.  Within most economics departments, environmental studies remained a relatively minor area of applied welfare economics.  So, when I enrolled in the Ph.D. program in Harvard’s Department of Economics in 1983, and when I received my degree five years later, no field of study was offered in the field of environmental or resource economics.

Fortunately, Harvard permitted its graduate students to develop an optional, self-designed field as one of two fields on which they were to be examined orally before proceeding to dissertation research.  Without a resident environmental economist in the Department of Economics (Martin Weitzman had yet to move to Harvard from the Massachusetts Institute of Technology), I developed an outline and reading list of the field through correspondence with leading scholars from other institutions, most prominently Kerry Smith, then at North Carolina State University.  My proposal to prepare for and be examined in the field of environmental and resource economics (along with my other field, econometrics) was approved by the Department’s director of graduate study, Dale Jorgenson.  So began my entry into the scholarly literature of the field.

But my interest in environmental economics pre-dated by a considerable number of years my matriculation at Harvard.  Like many others before and since, I came to the field because of a personal interest in the natural environment (the origin of which I describe below).  This personal interest evolved into a professional one while I was studying for an M.S. degree in agricultural economics at Cornell University in Ithaca, New York, in the late 1970’s, where my thesis advisor and mentor was Kenneth Robinson.  I had originally gone to Cornell to study for a professional degree in international development, but found agricultural economics more appealing, largely because of the opportunity to examine social questions with quantitative methods within a disciplinary framework.

The faculty at Cornell and the care given to graduate students (including masters students like myself) were outstanding.  Kenneth Robinson, my first mentor within the economics profession, became my ongoing role model for intellectual integrity.  It was a sad day many years later, in 2010, when Professor Robinson passed away.

A course in linear algebra, brilliantly taught by S. R. Searle, inspired me to pursue quantitative methods of analysis, and I was fortunate to have the opportunity to study econometrics with Timothy Mount.  One summer I had the privilege of learning about comparative economic systems in a small workshop setting from George Staller of the Cornell Department of Economics.   Working with Bud Stanton, I had my first experience teaching at the university level, and with Olan Forker, I had my first try at serious writing.  All of this led to my research and writing of an M.S. thesis, “Forecasting the Size Distribution of Farms:  A Methodological Analysis of the Dairy Industry in New York State.”  The methodology in question was a variable Markov transition probability matrix, the cells of which were estimated econometrically in a multinomial logit framework.  Much to my surprise, this work subsequently received the Outstanding Master’s Thesis Award in the national competition of the American Agricultural Economics Association.

Armed with my M.S. degree, I moved from Ithaca to Berkeley, California, where I eventually met up with Phillip LeVeen, who had until shortly before that time been a faculty member in the Department of Agricultural and Resource Economics at the University of California, Berkeley.  Phil was another superb mentor, and from him I learned the power of using simple models — by which I mean a set of supply and demand curves hastily drawn on a piece of scrap paper — to develop insights into real-world policy problems.  He introduced me to a topic that was to occupy me for the next few years — California’s perpetual concerns with water allocation.  I remember many afternoons spent working with Phil at his dining room table on questions of water supply and demand.

This work with Phil LeVeen led to a consultancy and then a staff position with the Environmental Defense Fund (EDF), the national advocacy group consisting of lawyers, natural scientists, and — then almost unique among environmental advocacy organizations — economists. This marked the beginning of what became an ongoing professional relationship with this rather remarkable organization.  At EDF, I was able to experience for the first time the use of economic analysis in pursuit of better environmental policy.  With W. R. Zach Willey, EDF’s senior economist in California, as a role model, and Thomas Graff, EDF’s senior attorney, as my mentor, I thrived in EDF’s collegial atmosphere, while thoroughly enjoying life in Berkeley’s “gourmet ghetto,” as my neighborhood was called.  Sadly, Tom Graff — without whose passionate and wise mentorship I would not be where I am today — passed away in 2009 after a heroic battle with cancer.

Although I found the work at EDF rewarding, I worried that I would eventually be constrained — either within the organization or outside it — by my limited education.  So, like many others in similar situations, I considered a law degree as the next logical step.  In fact, I came very close to enrolling at Stanford Law School, but instead, in 1983, I accepted an offer of admission to the Department of Economics at Harvard, moved back east to Cambridge, Massachusetts, and began what has turned out to be a long-term relationship with the University.

But where did my interest in the natural environment begin?  Not at Cornell; it was present long before those days.  But it had not yet arisen when I was studying earlier at Northwestern University, from which I received a B.A. degree in philosophy, having departed from my first scholarly interest, astronomy and astrophysics.

Rather, the origins of my affinity for the natural environment and my interest in resource issues are to be found in the four years I spent in a small, remote village in Sierra Leone, West Africa, as a Peace Corps Volunteer, working in agricultural extension (in particular, paddy rice development).  It was there that I was first exposed both to the qualities of a pristine natural environment and the trade-offs associated with economic development.

So, I had begun in astrophysics, moved to philosophy (both at Northwestern), then to agricultural extension in a developing country (Sierra Leone), then to international development studies and subsequently to agricultural economics (both at Cornell), then to environmental economics and policy (EDF), and eventually to graduate study in economics at Harvard.

My dissertation research at Harvard was directed by a committee of three faculty members:  Joseph Kalt, Zvi Griliches, and Adam Jaffe.  Joseph Kalt was the first faculty member at the Department of Economics to validate my interest in environmental and resource issues, and he was unfailingly generous to me and many other graduate students in making his office (and personal computer, then a rather scarce resource) available at all hours.  Later a colleague at the Kennedy School, Joe provided examples never to be forgotten — that economics could be a meaningful and enjoyable pursuit, and that excellence in teaching was a laudable goal.

Zvi Griliches was not only my advisor and mentor, but my spiritual father as well.  Generations of Harvard graduate students would offer similar testimony.  My own father had died only a year before I entered Harvard, and Zvi soon filled for me many paternal needs.  It is now approaching two decades since Zvi himself passed away.  I felt as if I had lost my father a second time.

If Zvi Griliches provided caring and inspiration, Adam Jaffe provided invaluable day-to-day guidance.  It was Adam who convinced me not to go on the job market in my fourth year with what would have been a mediocre dissertation, but to put in another year and do it right.  That turned out to be some of the best professional advice I have ever received.  Our intensive faculty-student relationship from dissertation days subsequently evolved into a very productive professional (and personal) one that continues to this day.  The name of Adam Jaffe appears frequently in my curriculum vitae as a co-author; he has been and continues to be much more than that.

Although they were not members of my thesis committee, I should acknowledge two other faculty members at the Harvard Department of Economics who played important roles in my education.  I was fortunate to take two courses in economic history (a department requirement) from Jeffrey Williamson, who had recently arrived from the University of Wisconsin.  Williamson’s class sessions were as close as anything I have seen to being economic research laboratories.  In class after class, we would carefully dissect one or more articles — examining hypothesis, theoretical model, data, estimation method, results, and conclusions.  If there was any place where I actually learned how to carry out economic research, it was in those classes.

The other name that is important to highlight is that of Lawrence Goulder, then a faculty member at Harvard, and now a professor at Stanford.  I say this not simply because he was willing to be my examiner in my chosen field of environmental and resource economics, nor because he subsequently became such a close friend.  Rather, what is striking about my professional relationship with Larry is the degree to which he has been an unnamed collaborator on so many projects of mine.  Although he and I have co-authored no more than a few articles, his name probably appears more frequently than anyone else’s in the acknowledgments of papers I have written.  There is no one whose overall judgement in matters of economics I trust more, and no one who has been more helpful.

When I began graduate school at Harvard in 1983, it was my intention to return to EDF as soon as I received my degree.  But by my third year in the program, I had decided to pursue an academic career, although one that was heavily flavored with involvement in the real world of public policy.  Within the context of this professional objective, it was not a difficult decision to accept the offer I received in February, 1988, to become an Assistant Professor at the Kennedy School.  Although some of the other offers I received at that time were also very attractive, the choice for me was obvious, and I have never regretted it — not for a moment.

I remain at the Kennedy School today, where I was promoted to Associate Professor in 1992 (an untenured rank at Harvard), and to a tenured position as Professor of Public Policy in 1997.   In 1998, I accepted an appointment as the Albert Pratt Professor of Business and Government, and in 2017, I was appointed the A. J. Meyer Professor of Energy and Economic Development.

In the year 2000, I launched the Harvard Environmental Economics Program, which today brings together — from across the University — thirty-two Faculty Fellows and twenty-seven Pre-Doctoral Fellows, who are graduate students studying for the Ph.D. degree in economics, political economy and government, public policy, or health policy.  The Program, which I continue to direct, forms links among faculty and graduate students engaged in research, teaching, and outreach in environmental, natural resource, and energy economics and related public policy, by sponsoring research projects, convening workshops, and supporting graduate (and undergraduate) education.

A key reason why the Program — and its various projects, including the Harvard Project on Climate Agreements — have been so successful is the marvelous administrative leadership and staff support it enjoys.  Everyone who has been involved in virtually any way has come away impressed by our Executive Director, Robert Stowe, Program Manager, Jason Chapman, and Bryan Galcik, Communications Coordinator.

At the Kennedy School, I have had an excellent mentor, William Hogan, and a superb advisor and friend, Richard Zeckhauser.  Over the years, six successive deans have provided leadership, guidance, and support (including abundant time for my research and writing) — Graham Allison, Robert Putnam, Albert Carnesale, Joseph Nye, David Ellwood, and Douglas Elmendorf.  At Harvard more broadly, I have benefitted from regular interactions with Daniel Schrag, director of the Harvard University Center for the Environment, and Martin Weitzman of the Department of Economics.  For two decades, Marty and I have co-directed a bi-weekly Seminar in Environmental Economics and Policy, which has provided me with frequent opportunities to learn both from seminar speakers and from Marty’s questions and comments.

I will also note that Harvard President Drew Faust has provided superb leadership of Harvard’s increasing research, teaching, and outreach activity on global climate change, and has been exceptionally supportive of my work on climate change policy.  I will refrain from naming the many others at Harvard and elsewhere from whom I continue to learn — including my many co-authors — only because the list of such valued colleagues and friends is so long.  Included have been a most remarkable set of Ph.D. students, many of whom have gone on to productive — indeed illustrious — careers.

Along the way, I have had my share of administrative responsibilities at Harvard, including serving as Director of Graduate Studies for the Doctoral Program in Public Policy and the Doctoral Program in Political Economy and Government, and Co-Chair of the Harvard Business School-Harvard Kennedy School Joint Degree Programs.  Outside of Harvard, I have had the privilege of being a University Fellow of Resources for the Future, a Research Associate of the National Bureau of Economic Research, and the founding Editor of the Review of Environmental Economics and Policy, as well as a member of the Board of Directors of Resources for the Future, the Scientific Advisory Board of the Fondazione Eni Enrico Mattei, and numerous editorial boards. I must also note that I serve as an editor of the Journal of Wine Economics.  In 2009, I was elected a Fellow of the Association of Environmental and Resource Economists.

What originally attracted me to the Kennedy School was the possibility of combining an academic career with extensive involvement in the development of public policy.  I have not been disappointed.  Indeed, a theme that emerges from my professional engagements over the past twenty-five years is the interplay between scholarly economic research and implementation in real-world political contexts.  This is a two-way street.   In some cases, my policy involvement has come from expertise I developed through research, following a path well worn by academics.  But, in many other cases, my participation in policy matters has stimulated for me entirely new lines of research activity.

Finally, what I have characterized as involvement in policy matters is described at the Kennedy School as faculty outreach, recognized to be of great institutional and social value, along with the two other components of our three-legged professional stool — research and teaching.  I should note that my outreach efforts have fallen into five broad categories:  advisory work with members of Congress and the White House (for example, Project 88, a bipartisan effort co-chaired by former Senator Timothy Wirth and the late Senator John Heinz, to develop innovative approaches to environmental and resource problems); service on federal government panels (for example, my role as Chairman of the Environmental Economics Advisory Committee of the U.S. Environmental Protection Agency Science Advisory Board); on-going consulting — often on an informal basis — with environmental NGOs (most frequently, the Environmental Defense Fund) and private firms; advisory work with state governments; and professional interventions in the international sphere, such as service as a Lead Author for the Second and the Third Assessment Reports and a Coordinating Lead Author for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, professional roles with the World Bank and other international organizations, and advisory work with foreign governments.

Reflections on Common Themes

Preparing the brief professional autobiography for the 2000 and 2013 books and for the 2017 SER article caused me to review many of the several hundred articles, book chapters, and essays I have written over the years.  This allowed me to identify some common themes that emerge from these more than two decades of research and writing.

First, there is the value — or at least, the potential value — of economic analysis of environmental policy.  The cause of virtually all environmental problems in a market economy is economic behavior (that is, imperfect markets affected by externalities), and so economics offers a powerful lens through which to view environmental problems, and therefore a potentially effective set of analytical tools for designing and evaluating environmental policies.

A second message, connected with the first, is the specific value of benefit-cost analysis for helping to promote efficient policies.  Economic efficiency ought to be one of the key criteria for evaluating proposed and existing environmental policies.  Despite its limitations, benefit-cost analysis can be useful for consistently assimilating the disparate information that is pertinent to sound decision making.  If properly done, it can be of considerable help to public officials when they seek to establish or assess environmental policies.

Third, the means governments use to achieve environmental objectives matter greatly, because different policy instruments have very different implications along a number of dimensions, including abatement costs in both the short and the long term.  Market-based instruments are particularly attractive in this regard.

Fourth, an economic perspective is also of value when reflecting on the use of natural resources, whether land, water, fisheries, or forests.  Excessive rates of depletion are frequently due to the nature of the respective property-rights regimes, in particular, common property and open-access.  Economic instruments — such as ITQ systems in the case of fisheries — can and have been employed to bring harvesting rates down to socially efficient levels.

Fifth and finally, policies for addressing global climate change — linked with emissions of carbon dioxide and other greenhouse gases — can benefit greatly from the application of economic thinking.  On the one hand, the long time-horizon of climate change, the profound uncertainty in links between emissions and actual damages, and the possibility of catastrophic climate change present significant challenges to conventional economic analysis.  But, at the same time, the ubiquity of energy generation and use in modern economies means that only market-based policies — essentially carbon pricing regimes — are feasible instruments for achieving truly meaningful emissions reductions.  Hence, despite the challenges, an economic perspective on this greatest of environmental threats is essential.

 A Personal Message

On a personal level, the professional path I have taken offers confirmation that research can influence public policy, and that involvement in public policy can stimulate new research.  The quest — both professional and personal — that took me from Evanston, Illinois, to Sierra Leone, West Africa, to Ithaca, New York, to Berkeley, California, and finally to Cambridge, Massachusetts suggests some consistency of purpose and even function.  I find myself doing similar things, but in different contexts.  It is fair to say that my professional life has taken me along a path that has brought me home.  The words of T. S. Eliot (1943) ring true:

                        We shall not cease from exploration

                        And the end of all our exploring

                        Will be to arrive where we started

                        And know the place for the first time.

Writing these essays, this year’s article, and today’s blog post have forced me to reflect on the past, and think about the future.  The twenty-two articles that comprised the first book of my selected papers and the twenty-six essays that comprised the second volume were the product of twenty-three years on the Harvard faculty (now almost 30 years).  I continue to learn about environmental economics and related public policy from colleagues, collaborators, students, friends, and inhabitants of the ”real world” of public policy – individuals from government, private industry, advocacy groups, and the press.  I hope my learning will continue.

Share